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HYPERSPECTRAL REFLECTANCE IMAGING FOR DETECTING

A FOODBORNE PATHOGEN: CAMPYLOBACTER

S. C. Yoon,  K. C. Lawrence,  G. R. Siragusa,  J. E. Line,  B. Park,  P. W. Feldner

ABSTRACT. This article is concerned with the development of a hyperspectral reflectance imaging technique for detecting and
identifying one of the most common foodborne pathogens, Campylobacter. Direct plating using agars is an effective tool for
laboratory tests and analyses of microorganisms. The morphology (size, growth pattern, color, etc.) of colonies grown on agar plates
has been widely used to tentatively differentiate organisms. However, it is sometimes difficult to differentiate target organisms like
Campylobacters from other contaminants grown together on the same agar plates. A hyperspectral reflectance imaging system
operating at the visible and near‐infrared (VNIR) spectral region from 400 nm to 900 nm was set up to measure spectral signatures
of 17 different Campylobacter and non‐Campylobacter subspecies. Protocols for culturing, imaging samples and for calibrating
measured data were developed. The VNIR spectral library of all 17 organisms commonly encountered in poultry was established
from calibrated hyperspectral reflectance images. A pattern classification algorithm was developed to locate and identify 48 h
cultures of Campylobacter and non‐Campylobacter contaminants on background agars (blood agar and Campy‐Cefex) with over
99% accuracy. The Bhattacharyya distance, a statistical separability measure, was used to predict the performance of the pattern
classification algorithm at a few wavelength bands chosen by the principal component analysis (PCA) band weightings. This
research has a potential to be expanded to detect other pathogens grown on agar media.

Keywords. Agar, Blood agar, Campy‐Cefex, Campy‐Line agar, Campylobacter, Cefex, Contaminant, Food safety, Hyperspectral
imaging, Non‐Campylobacter, Pathogen detection.

he most commonly recognized foodborne illness is
caused by the bacteria Campylobacter, Salmonella,
E. coli O157:H7, and Norovirus. The presence of any
of these pathogens in food poses a potential hazard to

human health. Campylobacter is one of the most common
causes of bacterial diarrhea illness worldwide. Among 18
different species, Campylobacter jejuni is the most commonly
isolated species from reported clinical infections, followed by
Campylobacter coli (USDA‐FSIS, 2005). Campylobacter in
poultry is of particular concern because of the high levels of
Campylobacter present on most retail chickens, although cattle,
unpasteurized milk, and water have also been associated with
Campylobacter infection. Detection and identification of
Campylobacters from contaminated food samples involves
time‐consuming or complicated laboratory tests such as direct
plating on agars, immunological techniques using antibody/
antigen interactions, or molecular methods using polymerase
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chain reaction (PCR) or nucleic acid (Stern et al., 2001a).
Despite the fact that it is time‐consuming, direct plating of
samples onto agars has been an effective technique for
isolation and enumeration of Campylobacters from a variety
of sample types; however, distinguishing Campylobacters
from the non‐Campylobacter contaminants that frequently
grow on many existing agars is difficult (Line, 2001).
Recently, use of selective antibiotics and differential
chemical dyes has been studied to suppress growth of non‐
Campylobacter contaminants while allowing Campylo-
bacter growth (Line, 2001).

In direct plating, growth of bacteria is often characterized by
colony morphology. Colonies of different bacteria can vary in
size, shape, color, opacity, contrast, shine, etc. The colony
morphology can be a good measure for tentatively identifying
the bacteria. For example, Campylobacter colonies on blood‐
supplemented or charcoal‐based agar media tend to be smooth,
convex, and shiny with a distinct edge, or flat, translucent, shiny,
and spreading with an irregular edge, as well as colorless to
grayish or light cream in color (Stern et al., 2001a). Growth may
be confluent without distinct colonies. In addition to the agar
type, environmental conditions such as moisture, oxygen level,
and temperature also affect the colony morphology. Typically,
C. jejuni growth on excessively moist agar media swarms,
which may be useful to characterize the growth but difficult to
isolate individual colonies (Line, 2001). Dry media sometimes
promote the growth of only pinpoint (i.e.,�non‐motile) colonies
(Line, 2001). Yet, definite identification of the organisms at the
species and subspecies levels may require application of
immunologically based latex agglutination assays or specific
genetic tests like PCR (Stern et al., 2001a).

In addition to visual inspection of the colony morphology,
spectral signatures of Campylobacter and non‐Campylo bacter
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Table 1. Microorganisms used in this study.
Lab Designation Genus and Species Strain Designation Source

1 Campylobacter jejuni ATCC[a] 49943 ATCC
2 Campylobacter coli ATCC 49941 ATCC
3 Campylobacter lari ATCC 43675 Human feces
4 Campylobacter jejuni CT‐epi #5 Poultry
5 Campylobacter jejuni CT‐epi #65 Poultry
6 Campylobacter jejuni Ty‐16C Poultry carcass rinse
7 Campylobacter jejuni Ty‐78 Poultry carcass rinse
8 Campylobacter coli CT‐epi #8 Poultry
9 Campylobacter coli CT‐epi #18 Poultry

10 Campylobacter coli Ty‐19C Poultry carcass rinse
11 Campylobacter coli Ty‐66 Poultry carcass rinse
12 Sphingomonas paucimobilis Contam. 1 Poultry
13 Acinetobacter baumannii Contam. 2 Poultry
14 Brevundimonas diminuta Contam. 3 Poultry
15 Ochrobacterium sp. Contam. 4 Poultry
16 Flavobacterium odoratum Contam. 5 Poultry
17 Acinetobacter baumannii Contam. 6 Poultry

[a] ATCC = American Type Culture Collection, Manassas, Virginia.

colonies may provide vital information about the
biochemical  compositions of the organisms and thus
facilitate  the detection and identification of the organisms on
agar media. Fourier transform infrared (FT‐IR) spectroscopy,
which has been applied to solve various microorganism
detection/identification  problems, was studied to distinguish
Campylobacters (C. jejuni and C. coli) at the species level
(Mouwen et al., 2005). However, FT‐IR spectroscopy is not
readily applicable to imaging of Petri dishes. Typically, FT‐
IR spectroscopy needs an infrared transparent window to
mount a biological sample (Naumann, 2000). More readily
accessible imaging techniques using a hyperspectral CCD
camera are needed to detect and identify Campylobacter and
non‐Campylobacter organisms. As a relevant study, a VNIR
hyperspectral imaging technique was studied for fungi
detection (Yao et al., 2005).

In this article, development of a non‐destructive, non‐contact
hyperspectral imaging technique is discussed to facilitate
detection and identification of Campylobacter and non‐
Campylobacter colonies grown on Petri dishes of three different
agars (blood agar, Campy‐Cefex, Campy‐Line agar). This
research may contribute to build a spectral library of
Campylobacter and non‐Campylobacter organisms. The
specific objectives of the article were: (1) to develop a protocol
for sample preparation and imaging Petri dishes over the VNIR
spectral region, (2) to develop classification algorithms that can
discriminate Campylobacters and non‐Campylobacters
commonly encountered in practice, and (3)�to develop an
optimal band selection method that is more closely related to the
classification accuracy.

MATERIALS AND METHODS
MICROORGANISM CULTURE AND PREPARATION 
OF COLONY SPOT PLATES

A collection of Campylobacter species and frequently‐
encountered non‐Campylobacter species from Campylobacter
semi‐selective agar media were maintained at the USDA‐ARS
Poultry Microbiological Safety Research Unit's culture
collection in Athens, Georgia (table 1). With the exception of
the American Type Culture Collection (ATCC) strains, all other

bacterial cultures were isolated from poultry samples consisting
of either whole‐carcass rinses or fecal/cecal specimens from
conventionally reared broiler chickens or processing plants
(Line, 2001; Siragusa et al., 2004; Stern et al., 2001b). Strains
were propagated in 16 mm × 125 mm glass screw‐capped
culture tubes in 9 mL of Campylobacter enrichment broth
(Accumedia Catalog No. 7526, Neogen, East Lansing, Mich.)
with selective supplements as per the manufacturer's
instructions. Tubes were incubated at 42°C for up to 72 h in a
Campy‐gas atmosphere (85% N2, 10% CO2, 5% O2; Airco Gas,
Norcross, Ga.) created by placing the tubes or plates within a re‐
sealable plastic bag (Reynolds Foodservice Item No. RS 1011,
Qwick Seal storage bag, Reynolds Metals Co., Richmond, Va.),
gas flushing three times, and refilling with the gas mixture for
dense liquid growth. Following the initial liquid culturing step,
5 μL spots (10 μL spots at the early stage of the project) were
inoculated to the surface of the respective agar plate and
incubated in Campy‐gas atmosphere as described at 42°C for a
total of 48 h. Agars used were blood agar (5% sheep's blood
agar, Remel, Inc., Lenexa, Kans.), Campy‐Cefex (Stern et al.,
2001b), and Campy‐Line agar (Line 2001). Campy‐Line agar
(CLA) and Campy‐Cefex (Cefex) were prepared in‐house in
standard 100 mm × 15 mm Petri dishes (Siragusa et al., 2004).
Cefex agar is one of commonly used agar media to isolate
Campylobacters from food sources. Cefex is more selective
than blood‐supplemented agars. CLA is more selective than
Cefex and contains a chemical dye, triphenyltetrazolium
chloride (TTC), that dyes Campylobacter colonies with a deep
red or magenta color (Line, 2001).

To avoid confluent growth and cross‐contamination, agar
plates were inoculated with spots at known and well‐spaced
locations on the agar surface. Figure 1 shows a schematic of the
spot locations and types. The 17 spots were inoculated on two
separate plates with nine and eight spots, respectively. The
“plate A” plates contained six spots of Campylobacter
subspecies (Nos. 1 through 6) and three spots of non‐
Campylobacters (Nos. 12 through 14). The “plate B” plates
contained five spots of Campylobacter subspecies (Nos. 7
through 11) and three spots of non‐Campylobacters (Nos. 15
through 17).

As implied above, one experiment took place over a five‐day
period from the sample preparation step (72 h + 48 h) until an
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Figure 1. Schematic of spot locations and types: (a) plate A and (b) plate B
types. Refer to table 1 for detailed information about the organisms.

imaging step (1 to 5 h). At the end of the second 48�h
incubation process, plates were taken out of the incubator and
stored at room temperature for 1 to 5 h before being imaged.
Eight experiments were carried out from April until July of
2007. For all but two experiments (the first and second ones),
experimental  protocols for the sample preparation and the
imaging remained same. Because we did not know in
advance what would be the right amount of inoculation for
the imaging study, we prepared one set of 10 μL spot plates
and two sets of both 5 μL and 10 μL spot plates for the first
and second experiment, respectively. By comparison with
10�μL spots, 5 μL spots were suitable for this study. Hence,
we prepared 5 μL spot plates for the last six experiments. In
other words, nine sets of spot plates (two of 10 L and seven
of 5 μL spot plates) were prepared for a total of eight
experiments.  The spot plates were prepared in duplicate per
agar type and spot size for each experiment (four plates per
agar type and spot size). A total of 108 spot plates (for all of
three agar types) were prepared for the hyperspectral imaging
during the period of four months. The purity of the organisms
was checked by visual inspection of grown colonies.
Separate plates inoculated by a streaking technique were also
prepared to check the organism purity.

HYPERSPECTRAL IMAGING SYSTEM

A visible and near‐infrared (VNIR) hyperspectral imaging
system (fig. 2), similar to one reported earlier (Lawrence et al.,
2003), was used for collecting spectral and spatial images. The
imaging system consisted of a hyperspectral imaging camera,
a copy stand to attach the camera, a computer to control the
camera and acquire images, an enclosure to block unwanted
light, halogen lamps, and a Petri dish holder. The hyperspectral
imaging camera (ITD, Stennis Space Center, MS) consisted of
a C‐mount focusing lens (XNP 1.4/17‐0303, Schneider Optics,
Hauppage, N.Y.), a�spectrograph (ImSpector V10E, Specim,
Oulu, Finland), a�12‐bit CCD sensor (SensiCam QE SVGA,
Cooke Corp., Auburn Hills, Mich.), and associated scanning
hardware. The hyperspectral imaging camera was designed so
that the target and the camera remained stationary while the lens
assembly moved (Mao, 2000). The spectrograph had a prism‐
grating‐prism design providing a nominal spectral range
between 400 and 1000 nm with a nominal spectral resolution
of 2.8 nm and bandpass of 2.95 nm, and it was connected to the
17 mm (2/3�in.) silicon‐based CCD detector with a 1280 × 1024
pixel resolution. A translation stage (STGA‐10, Newmark
Systems, Mission Viejo, Cal.) was attached to the slit end of the
spectrograph. The stage platform was threaded for a C‐mount

CCD camera

Lamp for
reflectance
illumination

Petri dish

Camera
stand

Enclosure

Power
supplies

Computer

Spectrograph

Translation
stage

Focusing
lens

Figure 2. VNIR hyperspectral imaging system. The frontal focusing lens was
mounted to a translation stage, which was fixed to the spectrograph. The
translation stage was moved to get a hyperspectral image.

focusing lens. The translation stage was moved by a motion
controller (NCS‐1S, Newmark Systems, Mission Viejo,
Cal.). Thus, the motorized translation stage moved the lens
assembly so that successive lines of the Petri dish were
scanned while the Petri dish itself remained stationary.

The hyperspectral imaging system captured two‐dimension-
al (2‐D) spectral images of the scene in the field of view line‐by‐
line by moving the frontal optic lens via the translation stage
(Lawrence et al., 2003). The translation stage moved
continuously while a hyperspectral image was acquired.
Operation parameters (scan speed and travel length) of the
translation stage were affected by camera exposure time, and
the optimal operation parameters were pre‐determined by ITD
and automatically configured within HyperVisual software
(ITD, Stennis Space Center, Miss.) once a camera exposure
time was set. The captured spectral images at the x and z
coordinates were synthesized to a three‐dimensional (3‐D) data
cube of the x, y, and z coordinates via HyperVisual on the fly,
where x and y are the spatial coordinates and z is the wavelength
coordinate. For the reflectance illumination, two 50 W halogen
MR16 lamps (Solux, EiKo, Shawnee, Kans.) were positioned at
the locations obliquely pointing down the Petri dish from the left
and right sides. The top of the enclosure was covered with a
metal plate having a hole at its center to hold a Petri dish. A
white acrylic diffuser was placed right beneath the cover plate,
and a Petri dish was put on top of the white acrylic diffuser. The
data analysis and algorithm development were performed using
IDL 6.3/ENVI 4.3(ITT Visual Information Solutions, Boulder,
Colo.) and MATLAB R2006b (The Mathworks, Natick, Mass.).

MEASUREMENT AND CALIBRATION

Two 4700 K broadband light beams laterally illuminated a
Petri dish at about 45° with respect to the vertical axis. Lateral
illumination was chosen rather than a 90° incident angle
because the lateral illumination reduced glare effects better. The
actual beam angles and locations of the lamps were adjusted to
avoid pixel saturation on the CCD sensor and to minimize glare
reflections (glints) from the agar surface and colonies. The
distance from the Petri dish to the camera lens was 22 cm. The
distance from the Petri dish to a lamp for front lighting was 37
cm. Two‐dimensional spectral images (i.e., line‐scan images)
were captured by 2 (spatial) × 4 (spectral) software binning and
90 ms exposure time. The F‐number of the lens was set to 4. The
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Figure 3. Hyperspectral image mosaic (Cefex cultures). Color‐composite images are displayed.

field of view (FOV) was 115 mm (W) × 93 mm (H). The pixel
resolution of a line‐scan image was 640 (spatial) × 256
(spectral). A total of 475 lines were scanned. Hence, the
dimension of the 3‐D image data cube was 640 (W) × 475 (H)
× 256 (wavelength).

Acquired images were pre‐processed to reduce the amount
of data and to suppress spurious spectral noise. All band images
were cropped down to 421 (W) × 475 (H). The 193 spectral
bands in the range of 400 to 900 nm were kept because the
spectra outside the range were not useful enough to provide
viable spectral information due to both the low diffraction
efficiency of the spectrograph and the low quantum efficiency
of the CCD detector. Typical CCD sensors are prone to random
noise due to various reasons, including dark current, readout
noise, shot noise, etc. The Savitzky‐Golay smoothing filter
(window size: 25; order of moment: 4) was applied to each pixel
independently to reduce the spectral random noise (Press et al.,
2002).

The hyperspectral camera was spectrally calibrated
(Lawrence et al, 2003). The average distance between adjacent
calibrated wavelengths, defined as the measured spectral
resolution, was 2.5953 nm. The spectral binning done by
software increased the measured spectral resolution by a factor
of 2. New wavelengths of the binned data were derived from the
original calibrated wavelengths by taking an arithmetic mean
over the disjoint sets of wavelengths. For instance, the spectral
binning size of 4 resulted in a spectral resolution of about 10 nm.
Hence, we used integer values for wavelengths throughout this
article for brevity (e.g., 501 nm instead of using 500.8901 nm)
because the fractional representation of wavelengths was not
critical. Intensity calibration was performed with a 75%
reflectance Spectralon target (13 × 13 cm, SRT‐75‐050,
Labsphere, North Sutton, N.H.) and a reflectance calibration
model (Lawrence et al., 2003). The percent reflectance value R
at each pixel (x,y) of the zth wavelength band was obtained by
the following calibration model:
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where Im is a measured raw value, Ir is a reference value on the
surface of the 75% reflectance panel, and Id is a dark current.

DATA ANALYSIS
Calibrated images were arranged into a single image

(mosaic) according to their measured dates (fig. 3). An image
mosaic approach was adopted to facilitate data analysis and
algorithm development because a mosaic can be treated as a
single hyperspectral image. In the mosaic, images measured
during the same date were vertically stacked. The stacked
images were then added to the mosaic in chronological order
(latest right). The “plate A” type plates were arranged in the first
row. The “plate B” type plates were arranged in the second row.
The third and fourth rows were replicates of the top two rows,
respectively. Figure 3 shows an image mosaic of Cefex cultures.
Note that, throughout this article, the Cefex cultures will be used
as a representative of the three agar types unless otherwise
stated.

A binary mask was made in order to suppress the background
noise outside and around the rim of each Petri dish (fig. 4).
These binary masks were served as areas valid for testing
classification algorithms (i.e., cross‐validation of classification
algorithms) and for facilitating other tasks, including image
processing and analysis. In addition, ground‐truth regions‐of‐
interest (ROIs) for all 17 organisms plus agar media were
prepared in such a way that only pure organisms could be

Campy.

Non-Campy.

Cefex agar

Figure 4. Image mask for cross‐validation (left) and ground‐truth ROIs
(right) with training classes.
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selected in the ROIs. Glints and rim shadows were excluded
in the ROIs. Glints were observed around colony edges along
the direction of the lateral illumination. If possible, pixels
that might have contained mixed spectra of agar media and
organisms were also excluded. Mixed pixels were typically
observed at the center of a spot with a translucent colony
surface and at outside boundaries of a spot. As an example,
figure 4 shows a binary mask for cross‐validation and
ground‐truth ROIs of three classes: Campylobacter, non‐
Campylobacter, and Cefex agar. The selected ground‐truth
ROIs were modified by the aforementioned manual method,
if necessary, after heuristically examining the shapes of the
mean, minimum, maximum, and standard deviation
reflectance spectra of each ROI. The final ground‐truth ROIs
were used for extracting statistics and training classifiers.

BAND SELECTION AND STATISTICAL SEPARABILITY

In practice, due to the usual limitation on the number of
training samples, more spectral features do not necessarily lead
to better classification results. This phenomenon is called the
Hughes effect (Landgrebe, 2003). In addition, spectral features
in hyperspectral images contain a lot of redundant information
because absorption features in adjacent spectral bands are
highly correlated. Hence, there is a need to find optimal, smaller
subsets of spectral features to use in classification. In this study,
principal component analysis (PCA) was used to determine
which spectral bands contribute to most of the data variability
(Landgrebe, 2003). A statistical separability test was performed
on the spectral bands chosen by the PCA. A PCA model consists
of principal components (or often called loadings or
eigenvectors for PCA), PCA‐bands (or scores), and eigenvalues.
Principal components contain information about directions in
which the original data have the most variability. Mathe-
matically, principal components correspond with the
eigenvectors of the covariance matrix of the mean‐centered
data, and they are uncorrelated and orthogonal. PCA‐bands (i.e.,
scores) are obtained by projecting the data onto the principal
components. Mathematically, a score is the scalar product of a
data vector and a principal component. Thus, elements of a
principal component are weighting factors individually
contributing to scores. The principal components were arranged
in descending order according to the associated eigenvalues. To
determine the contribution of each of all n bands to the scores
(a PCA image band in our case), we simply computed squares
of principal components and normalized to the sum of 1 by the
following equation:

},,{,)(/)()(
1
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where Wk(i) is a weighting factor of the ith element of the kth
principal component, Pk(i). We call all of Wk(i) the PCA‐band
weightings. The PCA‐band weightings of the first and second
principal components were examined.

As another band selection method, the statistics of all spectra
observed in each type of organism were computed. Mean,
minimum‐maximum, and standard deviation spectra were
examined to find statistical separability at particular spectral
bands. Since about 68% of the normally distributed population
is within one standard deviation of the mean (95% for two
standard deviations of the mean), we can roughly estimate class
separability by examining minimum‐maximum and standard
deviation intervals from the class mean. The ground‐truth ROI

mask was used for this test. The candidates of the bands having
large separability may be chosen by this method. Note that the
PCA‐based band selection does not explicitly measure class
separability that is more directly correlated to classification
accuracy because the PCA only tells the statistical variability
among spectral bands (not separability among classes). On the
other hand, the band selection method using the intervals from
the mean is somewhat heuristic. Because of these limitations,
we studied a statistical separability measure predicting
classification accuracy at a few bands chosen by the aforemen-
tioned band selection processes.

Among many different statistical separability metrics, the
Bhattacharyya distance measures the dissimilarity of two
probability distributions, and it has been used in classification
as a measure for the separability of classes. The Bhattacharyya
distance is linearly related to the probability of correct
classification (Comaniciu et al., 2000; Landgrebe, 2003).
Assuming that )(^ xpi  is an estimate of the discrete probability
density function of the ith class at x, where x is an intensity
value, the Bhattacharyya distance between the ith class and jth
class can be estimated by:

∑−=
x

ji xpxpjid )(^)(^1),(̂    (3)

We used this statistical measure (eq. 3) for measuring the
statistical separability of a pair of two classes among
Campylobacter, non‐Campylobacter contaminant, and agar‐
media classes in several bands chosen from the PCA‐band
weighting analysis mentioned above. The derivation of the
Bhattacharyya distance needs the estimation of the probability
density functions, for which we employed the histogram
formulation (Comaniciu et al., 2000). The implementation of
equation 3 based on a histogram method is fast and well suited
for the task of measuring class separability because the
Bhattacharyya distance measure is nearly optimal and has a
theoretical foundation (Comaniciu et al., 2000). The
Bhattacharyya distance varied from 0 (minimum) to 1
(maximum).

CLASSIFICATION
Our primary concern was to find which agar type and which

image classification method would be the best to distinguish
between Campylobacters and non‐Campylobacters grown on
agar plates. Given the measured data, a preliminary study found
the Cefex and the blood agar to be the best possible agar media
to separate the two groups of organisms. Hence, this article
reports the findings primarily based on Cefex and blood agar.
For both agar types, three classes (Campy., non‐Campy., and
agar) were initially designed for classification. For blood agar
cultures, a simple threshold‐based classifier was developed to
classify pixels of a single band into the three classes and glints.
The selection of the band and thresholds was necessary. On the
other hand, a similar threshold‐based classifier was applied to
Cefex cultures, but we found that there was a hard‐to‐distin-
guish organism (a non‐Campylobacter contaminant; sample
No. 12). Thus, we developed a detection algorithm for better
classification of the Cefex cultures by compensating this
limitation of the single‐band thresholding algorithm. The
developed algorithm was a two‐step hybrid method that
performed (1) a threshold‐based classifier on a single band for
classifying the three classes and the glints and (2) a two‐class
minimum distance classifier using the Mahalanobis distance
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Figure 5. Overview of the detection algorithm for Cefex cultures: Ir is a reflectance value at a pixel.

measure, which used all 193 spectral bands. All pixels
detected as the Campy. class during the single‐band
thresholding step were classified to the closest class,
Campylobacter or sample No. 12. A preliminary study to
determine the input size of the Mahalanobis distance
classifier for classifying the Campy. class and sample No. 12
revealed that the classification performance of all 193 bands
was better than the performance of three bands determined by
the PCA‐band weighting analysis.

Figure 5 summarizes the detection algorithm for Cefex
cultures. First, each hyperspectral image was re‐sized and
spectrally de‐noised by the methods mentioned earlier. After the
reflectance calibration, all calibrated images were stitched into
a mosaic similar to one shown in figure 3. Another mosaic of
binary plate masks (fig. 4) was manually generated for
confining the classification operation inside the Petri dish areas
only. Then a threshold‐based classifier was applied to the
masked image mosaic at 501 nm to separate the three classes
(Campy., non‐Campy., and Cefex) and glints. At each pixel, the
classifier worked as follows: (1) Cefex if Ir (a�reflectance value)
< Tcefex, (2) Campylobacter if Tcefex < Ir < Tcampy, (3)
unclassified if Tcampy < Ir < Tnon‐campy, (4) non‐Campylobacter
if Tnon‐campy < Ir < Tglint, and (5) glint if Ir > Tglint. The glint
pixels were assigned to be unclassified. The threshold values for
classifying the pixels in the 501 nm band image were
determined by trial and error. Class means and histograms of the
reflectance values were examined to get initial guesses. The
final threshold values were found to be close to the midpoints
of class‐mean intervals. To further classify unclassified pixels
on Cefex cultures, spatial contexts of the unclassified pixels
were examined. If a group (blob) of spatially connected
unclassified pixels was surrounded or connected by one
particular type of class label, then that particular class label was
assigned to the group of pixels. If there was more than one type
of class labels, then the unclassified group of pixels remained
unclassified. After this post‐processing, the Mahalanobis
distance classifier was applied to only the predicted
Campylobacter class in order to separate a particular class

(sample No. 12) from the predicted Campylobacter class. A
leave‐one‐out cross‐validation method was adopted to evaluate
the performance of the Mahalanobis distance classifier (Webb,
2002). For this cross‐validation, all but one day's data were used
for training the classifier, and the rest (one day's data) were left
out and used for testing (validating) the classifier. Note that this
cross‐validation method was applied to only the predicted
Campylobacter pixels obtained by the single‐band thresholding
algorithm for Cefex cultures shown in figure 5.

RESULTS AND DISCUSSION
COLONY SIZE AND PATTERNS

Figure 6 shows an example of digital camera photos of Petri
dishes of colony cultures grown on blood agar, Cefex, and CLA
plates. Because it was difficult to exactly control the amount
(5�μL/10 μL) of each spot for every experiment, inoculation
spots varied in size. In part, this led to colonies grown to
different sizes. The size of colonies grown on blood agar plates
ranged from 9 to 15 mm in diameter. Cefex agar plates produced
colonies of 6 to 12 mm in diameter. Colonies grown on CLA
plates had diameters from 7 to 11 mm. Some spots did not grow
as colonies at all. Others grew too much and spread into
neighboring spots, causing cross‐contamination. Some
inoculation spots suffered from cross‐contamination due to the
impurity of samples in stock. In this case, different types of
colonies were observed from one spot. Every effort was made
to maintain the pipeline of pure organisms and to produce pure
cultures. Apart from the impurity factor added during the
sample preparation, the type of an agar plate had the most
significant influence on colony growth pattern and colony color
(spectra in our case). Colonies on blood agar plates tended to
spread more compared to colonies on Cefex and CLA plates. On
the other hand, Cefex and CLA plates produced less spread
colonies with round and raised shapes. Sometime, a ring‐type
growth pattern was observed because the colonies were growing
outward. Figure 3 shows a color‐composite image mosaic of
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Figure 6. Grown culture example: blood agar, Cefex, and CLA (from left).

Cefex cultures. The black boxes in the mosaic mean missing
plates (not imaged) because of confluent growth or no
growth. One example of confluent growth is shown in the top
second and third plates in the first column of the mosaic
(fig.�3). The first and third columns contain plate images with
10 μL inoculation spots. The second (5 μL) and third (10 μL)
column images were taken on the same date. The blood agar
and CLA cultures, not shown in this article due to limited
space, also suffered from the same problems: cross‐
contamination,  no‐growth, or confluent growth.

SPECTRAL ANALYSIS

Mean and standard deviation reflectance spectra were
obtained from the ground‐truth ROI masks of all 17�organisms
grown on the three types of agars over the 400‐900 nm range,
as shown in figure 7. Blood agar (BA) and Cefex showed similar
mean spectral characteristics. In both cases, all of the 11
Campylobacter cultures showed low reflectance responses
(~5%) over the visible spectra below 650 nm (figs. 7a and 7c).
The near‐infrared spectra showed larger reflectance (~35%). On
the other hand, non‐Campylobacter cultures had a strong
absorption feature at around the green band (550 nm) and much
larger reflectance features over the visible spectral range than
the spectra of the Campylobacter cultures. Beyond 700 nm,
non‐Campylobacters (except sample No. 12, Sphingomonas
paucimobilis, in the Cefex case) had larger reflectance than
Campylobacters (figs. 7a and 7c). The mean spectrum of the
sample No. 12 contaminant grown on Cefex agar was very
similar to that of Campylobacters. The mean spectrum of the
non‐Campylobacter cultures grown on CLA was different from
the other two agars in the sense that it was much lower (less than
10%) below 560 nm, but it was much higher (larger than 40%)
in the rage from 700 nm to 850 nm (fig. 7e).

From the standard deviation plots in figures 7b, 7d, and 7f,
it was obvious that the three classes (Campy., non‐Campy., and
agar) of blood agar cultures and Cefex cultures were visually
well separable at around 500 nm, whereas the classes of CLA
cultures were not separable. From figures 7b and 7d, the
separability of the data around 500 nm was much larger than one
standard deviation. Note that sample No. 12 was not readily
separable (fig. 7d), and it was treated separately using the
detection algorithm. The spectral variability of BA and Cefex
cultures increased starting from 550 nm. In addition, in all agar
cases, it was observed that reflectance values of all organisms
sharply increased beyond 650 nm until 750 nm and then slowly
decreased after 800 nm. Overall, the variability of the spectra
in the range of 700‐900 nm became larger, and the mean spectra
over the same range were overlapped. From the above
observations, we hypothesized that the target organisms would

be statistically better separable in the subrange of 450‐530 nm
within the 400‐900 nm range than the rest. This hypothesis was
evaluated by estimating the Bhattacharyya distances at a few
bands determined by the PCA‐band weight analysis.

BAND SELECTION AND STATISTICAL SEPARABILITY

PCA was applied to the ground‐truth reflectance spectra of
blood agar, Cefex, and CLA cultures. About 76% and 20% of
the variation energy (measured by the magnitude of the first‐
and second‐largest eigenvalues) were captured by the first two
PCA‐bands (scores) in the blood agar case, and 78% and 16%
in the Cefex case. The weight vectors (see eq. 2) contributing
to the first PCA‐bands are shown in figures 8a and 8b (note that
the CLA case is omitted.). Two bands at 503 and 578 nm (the
blood agar case) and three bands at 501, 606, and 827 nm (the
Cefex case) were observed as local peaks in the band
contribution plots, respectively. In the case of CLA cultures, a
band at 633 nm and any band between 750 and 900�nm were
candidates. A scatter plot of the first two PCA weight vectors
provided another good perspective for band selection (figs. 8c
and 8d). Similarly, two bands at 503 and 578 nm (the BA case)
and three bands at 501, 606, and 827�nm (the Cefex case) were
valid candidates. It was interesting to observe that the valleys at
691 nm (fig. 8a) and 685 nm (fig. 8b) on the first PCA‐band
weighting axis showed the largest weighting values (crests) on
the second PCA‐band weighting axis (figs. 8c and 8d). Class
separability in each of these bands except ones at the valleys was
measured by the Bhattacharyya distance.

Table 2 summarizes the Bhattacharyya distances among
three classes (Campy., non‐Campy., and agar) of BA, Cefex, and
CLA cultures. For BA cultures, the band at 503 nm showed the
largest separability between Campylobacter and non‐
Campylobacter. For Cefex cultures, the band at 501 nm was the
best in separating all three classes. In the CLA case, the overall
separability was smaller than the other agars. Campylobacter
and all agars were well separable at 503 nm (BA), 501 nm
(Cefex), and 633 nm (CLA). The Bhattacharyya distance
between Campylobacters and non‐Campylobacters on Cefex
was lower than BA because of sample No. 12. When sample
No. 12 was treated as an independent class, the Bhattacharyya
distance became 0.950485 from 0.837521 at 501 nm. As a
reference, the Bhattacharyya distance between Campylobacters
and sample No. 12 on Cefex was 0.238246 at 501 nm, which
means that they were not statistically separable. Remember that
the Bhattacharyya distance is almost linearly related to
classification accuracy. Thus, high classification accuracy was
expected when a single band at either 501 nm (Cefex) or 503
nm (BA) was used. In the following section, classification
accuracy of blood agar first and then Cefex cultures is reported.
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Figure 7. Mean and standard deviation reflectance spectra of (a and b) BA cultures, (c and d) Cefex cultures, and (e and f) CLA cultures. The ROI masks were
used to compute the statistics of mean and standard deviations of reflectance spectra. The Cefex had four classes, whereas the others had three classes.

CLASSIFICATION ACCURACY: 
BLOOD AGAR AND CEFEX

The classification of the 503 nm band image of blood agar
(BA) cultures was done by the following rule: (1) blood agar if
a reflectance value is below 3, (2) non‐Campylobacter if the
value is greater than 7, and (3) Campylobacter otherwise.
Table�3 summarizes the classification accuracy. For computing
the confusion matrix in table 3a, sample No. 12 (Sphingomonas
paucimobilis, contaminant 1) was treated as a separate set of
ground‐truth ROI pixels. When the Sphingomonas paucimobilis
class was included in the non‐Campylobacter class, the total
number of the ground‐truth ROI pixels was 136,370 and the
overall classification accuracy was 98.07% (133,740
pixels/136,370 pixels). The Kappa coefficient was 0.9703. The
BA ROI pixels (n = 59,017) were classified with 100%
accuracy. The Campylobacter ROI pixels (n = 32,590) were
classified with 98.97% accuracy (32,254 pixels/32,590 pixels).
The non‐Campylobacter ROI pixels (n = 44,763) were
classified with 94.88% accuracy (42,469 pixels/44,763 pixels),

whereas sample No. 12 alone (n = 4,200) was classified with
52.90% accuracy (2,222 pixels/4,200 pixels). Almost half
(47.10%) of the sample No. 12 ROI pixels were misclassified
as Campylobacter class. The commission errors of the
Campylobacter, non‐Campylobacter, and BA classes were
6.64%, 0.11%, and 0.49%, respectively (table 3b). The
omission errors of the Campylobacter, non‐Campylobacter, and
BA classes were 1.03%, 5.12%, and 0%, respectively (table 3b).
Sample No. 12 was mainly responsible for the relatively large
commission error and omission error rates (6.64% and 5.12%)
of the Campylobacter and non‐Campylobacter classes,
respectively. A secondary factor that affected the errors was a
spectral mixing phenomenon around the inner and outer rims of
a colony in which the contribution of the background agar to the
spectral response was not trivial. When the sample No. 12 ROI
pixels were excluded from the non‐Campylobacter ground‐
truth ROI pixels, the total number of ground‐truth ROI pixels
became 132,170 and the overall classification accuracy
increased to 99.51% (131,518 pixels /132,170 pixels). The
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Figure 8. PCA‐band contribution weightings of blood agar and Cefex cultures. Wavelengths were rounded up to the nearest integer values.

Table 2. Bhattacharyya distance.
Blood agar Cefex CLA

503 nm 578 nm 501 nm 606 nm 827 nm 633 nm 816 nm

Campy. vs. non‐Campy. 0.927 0.912 0.838 0.831 0.613 0.670 0.362
Campy. vs. agar 0.999 1.000 0.999 0.591 0.285 0.994 0.848
Non‐Campy. vs. agar 1.000 0.993 1.000 0.893 0.663 0.741 0.922

Table 3. Classification accuracy (the single‐band thresholding algorithm only): blood agar (BA).

(a) Confusion matrix
Ground Truth (Pixels)

Class Campylobacter Non‐Campy.[a] No. 12 (non‐Campy.) BA Total

Campylobacter 32,254 (98.97%)     316 (0.78%)   1,978 (47.10%)     0  (0%)     34,548 (25.33%)
Non‐Campy.       45 (0.14%)  40,247 (99.22%)   2,222 (52.90%)     0  (0%)     42,514 (31.18%)

BA      291 (0.89%)      0 (0%)   0  (0%) 59,017 (100%)     59,308 (43.49%)
Total 32,590 (100%) 40,563 (100%) 4,200 (100%) 59,017 (100%) 136,370 (100%)

(b) Commission and omission errors when sample No. 12

Commission
(%)

Omission
(%)

Commission
(pixels)

Omission
(pixels)

was included in the non‐Campy. class
Class

Campylobacter 6.64 1.03 2,294/34,548   336/32,590
non‐Campy. 0.11 5.12   45/42,514 2294/44,763

BA 0.49 0.00  291/59,308     0/59,017

(c) Commission and omission errors when sample No. 12

Commission
(%)

Omission
(%)

Commission
(pixels)

Omission
(pixels)

was excluded from the non‐Campy. class
Class

Campylobacter 0.97 1.03 316/32,570 336/32,590
non‐Campy. 0.11 0.78  45/40,292 316/40,563

BA 0.49 0.00 291/59,308   0/59,017
[a] All non‐Campylobacter contaminants except sample No. 12.
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Kappa coefficient became 0.9924. The BA ROI pixels were
classified with 100% accuracy. The Campylobacter ROI
pixels were classified with 98.97% accuracy. The non‐
Campylobacter ROI pixels without the sample No. 12 ROI
pixels were classified with 99.22% accuracy. The commis-
sion errors of the Campylobacter, non‐Campylobacter, and
BA classes became 0.97%, 0.11%, and 0.49%, respectively
(table 3c). The omission errors of the Campylobacter, non‐
Campylobacter, and BA classes were 1.03%, 0.78%, and 0%,
respectively (table 3c).

Similarly to the single‐band thresholding algorithm applied
to the BA culture images, the Cefex culture images were
classified by the following single‐band thresholding algorithm:
(1) Cefex if a reflectance value is below 3, (2) non‐Campylo-
bacter if the value is greater than 10, and (3)�Campylobacter
otherwise. Table 4a summarizes the performance of the single‐
band thresholding algorithm. The detection accuracy of the
Campylobacter class (n = 93,224) was 98.99% (92,282 pixels/
93,224 pixels) with 7.51% (7,498 pixels/99,780 pixels) of the
commission error rate. The detection accuracy of the Cefex
class (n = 96,372) was 100% with 0.98% (957 pixels/97,329
pixels) of the commission error rate. The detection accuracy of
the non‐Campylobacter class (n�= 75,388) was 90.03% (67,875
pixels/75,388 pixels) without commission errors (0 pixels/
67,875 pixels). The factors affecting the omission and
commission errors were similar to those of the BA case, where
sample No. 12 (n = 5,837) was a major reason for the errors and
the spectral mixing problem around the inner and outer rims of
a colony was a secondary factor. If the confusion matrix of table
4a is carefully examined, you will notice that the detection
accuracy of sample No. 12 was 0% (0 pixels/5,837 pixels). In
addition, 99.74% (5,822 pixels/5,837 pixels) and 0.26%
(15�pixels of 5,837 pixels) of the sample No. 12 ROI pixels were
classified as Campylobacter class and Cefex class, respectively.
This result strongly suggests that the pixels in the predicted
Campylobacter class needed to be classified again in order to

extract the sample No. 12 class pixels. In comparison, only half
(47.10%) of the sample No. 12 ROI pixels needed to be further
classified for the BA case. Due to the complete misclassification
of the sample No. 12 pixels, an image classification algorithm
was developed for the Cefex culture images only, and its results
are reported in the following.

The threshold parameters of the developed algorithm for
classifying the 501 nm band of Cefex cultures were set as
follows: Tcefe x = 3, Tcampy. = 7.5, Tnon‐campy. = 10, and Tglint. =
30. A reflectance value between 7.5 and 10 was not classified
initially. After post‐processing, the unclassified pixels were
labeled as described before. The pixels predicted as
Campylobacter class were further classified by the two‐class
Mahalanobis distance classifier to separate Sphingomonas
paucimobilis (sample No. 12) from Campylobacters. The
resulting classification result was quantitatively evaluated at the
ground‐truth ROI pixels. The total number of the ground‐truth
ROI pixels was 264,984: Campylobacter (93,224), non‐
Campylobacter (75,388), Cefex (96,372). The classification
performance was summarized in a confusion matrix shown in
table 4b. The overall classification accuracy was 99.29%
(263,104 pixels/264,984 pixels). The Kappa coefficient was
0.9893. The Cefex ROI pixels were classified with 100%
accuracy. The Campylobacter ROI pixels were classified with
98.62% accuracy. The non‐Campylobacter ROI pixels were
classified with 99.22% accuracy. The commission errors of the
Campylobacter, non‐Campylobacter, and Cefex classes were
0.3%, 0.3%, and 1.19%, respectively. The omission errors of the
Campylobacter, non‐Campylobacter, and Cefex classes were
1.38%, 0.78%, and 0%, respectively. Only 0.08% of pixels were
still unclassified. Most of the unclassified pixels were observed
in one spot, where the colony was translucent, small, and cross‐
contaminated. The spectral similarity of Sphingomonas
paucimobilis and Campylobacter was responsible for most
misclassified pixels. Next, the developed classification
algorithm was qualitatively evaluated on the entire image space

Table 4. Classification accuracy (the single‐band thresholding algorithm and the developed algorithm): Cefex.
(a) Confusion matrix of the single‐band thresholding algorithm

Ground Truth (Pixels)

Class Campylobacter non‐Campy.[a] No. 12 (non‐Campy.) Cefex Total

Campylobacter 92282 (98.99%) 1676 (2.41%) 5822 (99.74%) 0 (0%) 99780 (37.66%)
non‐Campy. 0 (0%) 67875 (97.59%) 0 (0%) 0 (0%) 67875 (25.61%)

Cefex 942 (1.01%) 0 (0%) 15 (0.26%) 96372 (100%) 97329 (36.73%)
Total 93224 (100%) 69551 (100%) 5837 (100%) 96372 (100%) 264984 (100%)

(b) Confusion matrix of the developed algorithm
Ground Truth (Pixels)

Class Campylobacter non‐Campy.[a] No. 12 (non‐Campy.) Cefex Total

Unclassified 16 (0.02%) 131 (0.19%) 69 (1.18%) 0 (0%) 216 (0.08%)
Campylobacter 91935 (98.62%) 156 (0.22%) 124 (2.12%) 0 (0%) 92215 (34.80%)
non‐Campy.[b] 0 (0%) 68657 (98.71%) 0 (0%) 0 (0%) 68657 (25.91%)

No. 12 228 (0.24%) 511 (0.73%) 5629 (96.44%) 0 (0%) 6368 (2.40%)
Cefex 1045 (1.12%) 96 (0.14%) 15 (0.26%) 96372 (100%) 97528 (36.81%)
Total 93224 (100%) 69551 (100%) 5837 (100%) 96372 (100%) 264984 (100%)

(c) Commission and omission errors of the developed algorithm

Commission
(%)

Omission
(%)

Commission
(Pixels)

Omission
(Pixels)Class

Campylobacter 0.30 1.38 280/92215 1289/93224
non‐Campy. 0.30 0.78 228/68657 591/75388

Cefex 1.19 0.00 1156/97528 0/96372
[a] All non‐Campylobacter contaminants (ground‐truth) except the sample No. 12.
[b] Predicted class for all non‐Campylobacter contaminants except the sample No. 12.
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Figure 9. Classification result of Cefex cultures.

after performing leave‐one‐out cross‐validation. The
classification images were combined into a mosaic. Figure�9
shows a mosaic of classification images tested by the cross‐
validation process. At the spot level, all spots except one were
correctly classified. The misclassified spot contained three
labels: Campylobacter, non‐Campylobacter, and unclas-
sified. The unclassified pixels consisted of the majority of the
spot. Other common misclassified pixels were observed
either from the Campylobacter and Sphingomonas paucimo-
bilis classes because of the inefficiency of the Mahalanobis
distance classifier using the entire 193 spectral bands.

CONCLUSIONS
A VNIR hyperspectral reflectance imaging technique was

evaluated to develop an imaging protocol to detect
Campylobacter species and non‐Campylobacter species
commonly encountered in poultry carcasses in a controlled
condition. The 48 h cultures from 5 μL spots were used for the
study. The spectral responses of the colonies were examined
over the range of 400 nm to 900 nm. Blood agar and Campy‐
Cefex agar were selected to develop the detection algorithm.
Several spectral bands (501, 503, 606, and 827 nm) showed
large statistical variability. The Bhattacharyya distance measure
was employed to select optimal bands showing the largest
statistical separability among target classes. The band at around
500 nm showed the largest separability for both blood agar and
Cefex cultures because most of the pixels were correctly
classified by segmenting the single band image with thresholds.
However, in the case of Cefex cultures, one particular non‐
Campylobacter species had spectral responses similar to
Campylobacter species. To classify the two species, a statistical
classifier (Mahalanobis distance classifier) was evaluated over
the entire spectral band with a leave‐one‐out cross‐validation
method. The resulting classification accuracy on both agar
cultures was over 99%. The commission errors ranged from
0.11% to 1.19%. The omission errors were between 0% and
1.38%. A future study is needed to develop an imaging system
that can deal with more practical culture conditions. In addition,
a time‐base study for early detection is needed.
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